Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.286
Filtrar
1.
J Agric Food Chem ; 72(2): 999-1006, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175165

RESUMO

A series of novel pyrido [1,2-α] pyrimidinone mesoionic derivatives bearing a propenylbenzene group at the 1-position were synthesized on the basis of the structure of mesoionic insecticides triflumezopyrim and dicloromezotiaz via a rationally conceived pharmacophore model and evaluated for their insecticidal activities against three insect vectors. The bioassay results showed that some compounds exerted remarkable insecticidal activities against M. domestica, Ae. albopictus, and B. germanica. Particularly, compound 26l displayed outstanding insecticidal activity against Ae. Albopictus, with an LC50 value of 0.45 µg/mL, far superior to that of imidacloprid (LC50 = 1.82 µg/mL) and equivalent to that of triflumezopyrim (0.35 µg/mL). Meanwhile, compound 34l presented a broad insecticidal spectrum, with LC50 values of 1.51 µg/g sugar, 0.52 µg/mL and 0.14 µg/adult, which were about 2.88, 3.50, and 1.50 times better than that of imidacloprid (LC50 = 4.35 µg/g sugar, 1.82 µg/mL and 0.21 µg/adult against M. domestica, Ae. albopictus, and B. germanica, respectively) and equivalent to that of triflumezopyrim against M. domestica (1.13 µg/g sugar) and Ae. albopictus (0.35 µg/mL) but lower than the potency against B. germanica (0.06 µg/g sugar). The molecular docking study by energy minimizations revealed that introducing propenylbenzene at the 1-position of compounds 26l and 34l could embed into the binding pocket of nicotinic acetylcholine receptors and form pi-alkyl interaction with LEU306. These results demonstrated that compounds 26l and 34l could be promising candidates for vector control insecticides, which deserved further investigation.


Assuntos
Inseticidas , Neonicotinoides , Nitrocompostos , Inseticidas/química , Simulação de Acoplamento Molecular , Pirimidinonas/química , Açúcares
2.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834098

RESUMO

Antimicrobial peptides (AMPs) can kill bacteria by disrupting their cytoplasmic membrane, which reduces the tendency of antibacterial resistance compared to conventional antibiotics. Their possible toxicity to human cells, however, limits their applicability. The combination of magnetically controlled drug delivery and supramolecular engineering can help to reduce the dosage of AMPs, control the delivery, and improve their cytocompatibility. Lasioglossin III (LL) is a natural AMP form bee venom that is highly antimicrobial. Here, superparamagnetic iron oxide nanoparticles (IONs) with a supramolecular ureido-pyrimidinone (UPy) coating were investigated as a drug carrier for LL for a controlled delivery to a specific target. Binding to IONs can improve the antimicrobial activity of the peptide. Different transmission electron microscopy (TEM) techniques showed that the particles have a crystalline iron oxide core with a UPy shell and UPy fibers. Cytocompatibility and internalization experiments were carried out with two different cell types, phagocytic and nonphagocytic cells. The drug carrier system showed good cytocompatibility (>70%) with human kidney cells (HK-2) and concentration-dependent toxicity to macrophagic cells (THP-1). The particles were internalized by both cell types, giving them the potential for effective delivery of AMPs into mammalian cells. By self-assembly, the UPy-coated nanoparticles can bind UPy-functionalized LL (UPy-LL) highly efficiently (99%), leading to a drug loading of 0.68 g g-1. The binding of UPy-LL on the supramolecular nanoparticle system increased its antimicrobial activity against E. coli (MIC 3.53 µM to 1.77 µM) and improved its cytocompatible dosage for HK-2 cells from 5.40 µM to 10.6 µM. The system showed higher cytotoxicity (5.4 µM) to the macrophages. The high drug loading, efficient binding, enhanced antimicrobial behavior, and reduced cytotoxicity makes ION@UPy-NH2 an interesting drug carrier for AMPs. The combination with superparamagnetic IONs allows potential magnetically controlled drug delivery and reduced drug amount of the system to address intracellular infections or improve cancer treatment.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Animais , Humanos , Pirimidinonas/química , Escherichia coli , Portadores de Fármacos , Anti-Infecciosos/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro , Íons , Mamíferos
3.
J Biol Chem ; 299(10): 105208, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660906

RESUMO

Riboswitches are small noncoding RNAs found primarily in the 5' leader regions of bacterial messenger RNAs where they regulate expression of downstream genes in response to binding one or more cellular metabolites. Such noncoding RNAs are often regulated at the translation level, which is thought to be mediated by the accessibility of the Shine-Dalgarno sequence (SDS) ribosome-binding site. Three classes (I-III) of prequeuosine1 (preQ1)-sensing riboswitches are known that control translation. Class I is divided into three subtypes (types I-III) that have diverse mechanisms of sensing preQ1, which is involved in queuosine biosynthesis. To provide insight into translation control, we determined a 2.30 Å-resolution cocrystal structure of a class I type III preQ1-sensing riboswitch identified in Escherichia coli (Eco) by bioinformatic searches. The Eco riboswitch structure differs from previous preQ1 riboswitch structures because it has the smallest naturally occurring aptamer and the SDS directly contacts the preQ1 metabolite. We validated structural observations using surface plasmon resonance and in vivo gene-expression assays, which showed strong switching in live E. coli. Our results demonstrate that the Eco riboswitch is relatively sensitive to mutations that disrupt noncanonical interactions that form the pseudoknot. In contrast to type II preQ1 riboswitches, a kinetic analysis showed that the type III Eco riboswitch strongly prefers preQ1 over the chemically similar metabolic precursor preQ0. Our results reveal the importance of noncanonical interactions in riboswitch-driven gene regulation and the versatility of the class I preQ1 riboswitch pseudoknot as a metabolite-sensing platform that supports SDS sequestration.


Assuntos
Riboswitch , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Pirimidinonas/química , RNA Bacteriano/genética , Conformação de Ácido Nucleico , Ligantes
4.
J Agric Food Chem ; 71(22): 8381-8390, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37218999

RESUMO

Bean aphid (Aphis craccivora) resistance to commonly used insecticides has made controlling these pests increasingly difficult. In this study, we introduced isoxazole and isoxazoline, which possess insecticidal activity, into pyrido[1,2-a]pyrimidinone through a scaffold hopping strategy. We designed and synthesized a series of novel mesoionic compounds that exhibited a range of insecticidal activities against A. craccivora. The LC50 values of compounds E1 and E2 were 0.73 and 0.88 µg/mL, respectively, better than triflumezopyrim (LC50 = 2.43 µg/mL). Proteomics and molecular docking analyses showed that E1 might influence the A. craccivora nervous system by interacting with neuronal nicotinic acetylcholine receptors (nAChRs). This research offers a new approach to the advancement of novel mesoionic insecticides.


Assuntos
Inseticidas , Pirimidinonas , Pirimidinonas/síntese química , Pirimidinonas/química , Pirimidinonas/farmacologia , Inseticidas/síntese química , Inseticidas/química , Inseticidas/farmacologia , Isoxazóis/química , Estrutura Molecular , Proteômica , Afídeos , Animais , Relação Estrutura-Atividade
5.
Bioorg Chem ; 135: 106390, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37037129

RESUMO

In this paper, an environmentally benign, convenient, and efficient one-pot three-component reaction has been developed for the regioselective synthesis of novel 5-aroyl(or heteroaroyl)-6-(alkylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-diones (4a‒n) through the sequential condensation of aryl(or heteroaryl)glyoxal monohydrates (1a‒g), 1,3-dimethylbarbituric acid (2), and alkyl(viz. cyclohexyl or tert-butyl)isocyanides (3a or 3b) catalyzed by ultra-low loading ZrOCl2•8H2O (just 2 mol%) in water at 50 ˚C. After synthesis and characterization of the mentioned furo[2,3-d]pyrimidines (4a‒n), their multi-targeting inhibitory properties were investigated against the active site and putative allosteric hotspots of both SARS-CoV-2 main protease (MPro) and papain-like protease (PLPro) based on molecular docking studies and compare the attained results with various medicinal compounds which approximately in three past years were used, introduced, and or repurposed to fight against COVID-19. Furthermore, drug-likeness properties of the mentioned small heterocyclic frameworks (4a‒n) have been explored using in silico ADMET analyses. Interestingly, the molecular docking studies and ADMET-related data revealed that the novel series of furo[2,3-d]pyrimidines (4a‒n), especially 5-(3,4-methylendioxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-dione (4g) as hit one is potential COVID-19 drug candidate, can subject to further in vitro and in vivo studies. It is worthwhile to note that the protein-ligand-type molecular docking studies on the human body temperature-dependent MPro protein that surprisingly contains zincII (ZnII) ion between His41/Cys145 catalytic dyad in the active site, which undoubtedly can make new plans for designing novel SARS-CoV-2 MPro inhibitors, is performed for the first time in this paper, to the best of our knowledge.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Catálise , Domínio Catalítico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia
6.
Bioorg Chem ; 134: 106452, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889201

RESUMO

The enzyme chorismate mutase (or CM that is vital for the survival of bacteria) is an interesting pharmacological target for the identification of new anti-tubercular agents. The 5,5-disibstituted pyrazolo[4,3-d]pyrimidinone derivatives containing the fragment based on 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide were designed and explored as the potential inhibitors of chorismate mutase. Based on encouraging docking results of two representative molecules evaluated in silico against MtbCM (PDB: 2FP2) the Wang resin catalysed sonochemical synthesis of target N-heteroarenes were undertaken. The methodology involved the reaction of 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide with the appropriate cyclic/acyclic ketones to afford the desired products in acceptable (51-94%) yields. The methodology was also extended successfully towards the synthesis of 2,2-disubstituted 2,3-dihydroquinazolin-4(1H)-ones in excellent (85-90%) yields. In vitro MTT assay against the RAW 264.7 cell line followed by enzymatic assay against MtbCM identified 3b and 3c as active compounds that showed two H-bonding via their NH (at position 6) and CO group with MtbCM in silico and encouraging (54-57%) inhibition at 30 µM in vitro. Notably, none of the 2,2-disubstituted 2,3-dihydroquinazolin-4(1H)-ones showed any significant inhibition of MtbCM suggesting the favourable role of the pyrazole moiety in case of pyrazolo[4,3-d]pyrimidinones. The favourable role of cyclopentyl ring attached to the pyrazolo[4,3-d]pyrimidinone moiety and that of two methyl groups in place of cyclopentyl ring was also indicated by the SAR study. Besides showing effects against MtbCM in the concentration response study, 3b and 3c showed little or no effects on mammalian cell viability up to 100 µM in an MTT assay but decreased the % Mtb cell viability at 10-30 µM with > 20% decrease at 30 µM in an Alamar Blue Assay. Moreover, no adverse effects were noted for these compounds when tested for teratogenicity and hepatotoxicity in zebrafish at various concentrations. Overall, being the only example of MtbCM inhibitors that showed effects on Mtb cell viability the compound 3b and 3c are of further interest form the view point of discovery and development of new anti-tubercular agents.


Assuntos
Mycobacterium tuberculosis , Animais , Estrutura Molecular , Pirimidinonas/química , Relação Estrutura-Atividade , Corismato Mutase , Sobrevivência Celular , Peixe-Zebra/metabolismo , Mamíferos/metabolismo
7.
Science ; 378(6616): eadd1268, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36227998

RESUMO

The transient receptor potential melastatin 8 (TRPM8) channel is the primary molecular transducer responsible for the cool sensation elicited by menthol and cold in mammals. TRPM8 activation is controlled by cooling compounds together with the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Our knowledge of cold sensation and the therapeutic potential of TRPM8 for neuroinflammatory diseases and pain will be enhanced by understanding the structural basis of cooling agonist- and PIP2-dependent TRPM8 activation. We present cryo-electron microscopy structures of mouse TRPM8 in closed, intermediate, and open states along the ligand- and PIP2-dependent gating pathway. Our results uncover two discrete agonist sites, state-dependent rearrangements in the gate positions, and a disordered-to-ordered transition of the gate-forming S6-elucidating the molecular basis of chemically induced cool sensation in mammals.


Assuntos
Temperatura Baixa , Ativação do Canal Iônico , Fosfatidilinositol 4,5-Difosfato , Pirimidinonas , Canais de Cátion TRPM , Sensação Térmica , Animais , Camundongos , Microscopia Crioeletrônica , Ligantes , Mentol/química , Mentol/farmacologia , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/farmacologia , Sensação Térmica/efeitos dos fármacos , Sensação Térmica/fisiologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Conformação Proteica , Pirimidinonas/química , Pirimidinonas/farmacologia
8.
Langmuir ; 38(43): 13253-13260, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256960

RESUMO

Biomineral materials such as nacre of shells exhibit high mechanical strength and toughness on account of their unique "brick-mortar" multilayer structure. 2-Ureido-4[1H]-pyrimidinone (UPy) derivatives with different types of end groups, due to the self-complementary quadruple hydrogen bonds and abundant Ca2+ binding sites, can easily self-assemble into supramolecular aggregates and act as templates and skeleton in the process of inducing mineral crystallization. In this work, UPy derivatives were used as templates to induce the mineralization and growth of CaCO3 through a CO2 diffusion method. The morphology of CaCO3 crystals was modulated and analyzed by adjusting the synthesizing parameters including Ca2+ concentration, pH, and end groups. The results showed that, by the regulatory role of the mineralization template, it was easier to realize the multilayer crystal structure at a lower concentration of Ca2+ (less than 0.01 mol L-1). Under alkaline regulation, the quadruple hydrogen bonds would be destroyed, and the template's regulation effect on the morphology of CaCO3 crystals would be weakened. Moreover, by comparing different types of end groups, it was proven that the UPy derivatives with carboxylic acid groups (-COOH) played a crucial role in the process of CaCO3 crystallization with unique morphologies.


Assuntos
Aminoácidos , Pirimidinonas , Ligação de Hidrogênio , Pirimidinonas/química , Cristalização , Hidrogênio
9.
Eur J Med Chem ; 243: 114786, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36170799

RESUMO

Proteolysis targeting chimera (PROTAC) technology has received widespread attention in recent years as a promising strategy for drug development. Herein, we report a series of novel Wee1 degraders, which were designed and synthesized based on PROTAC technology by linking AZD1775 with CRBN ligands through linkers of different lengths and types. All degraders could effectively and completely degrade cellular Wee1 protein in MV-4-11 cell line at IC50 concentrations. Preliminary assessments identified 42a as the most active degrader, which possessed potent antiproliferative activity and induced CRBN- and proteasome-dependent degradation of Wee1. Moreover, 42a also exhibited a time- and concentration-dependent depletion manner and inducing cell cycle arrest in G0/G1 phase and cancer cell apoptosis. More importantly, 42a showed acceptable in vitro and in vivo pharmacokinetic properties and displayed rapid and sustained Wee1 degradation ability in vivo. Taken together, these findings contribute to understanding the development of PROTACs and demonstrate that our Wee1-targeting PROTAC strategy has potential novel applications in cancer therapy.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Proteólise , Apoptose , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Pirazóis/química , Pirazóis/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia
10.
Chem Pharm Bull (Tokyo) ; 70(2): 111-119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35110431

RESUMO

An efficient synthetic method for novel 4,4-disubstituted 3,4-dihydropyrimidin-2(1H)-ones 5 and -thiones 6 was developed. The cyclocondensation reaction of O-methylisourea hemisulfate salt 11 with 8 gives a tautomeric mixture of dihydropyrimidines 12 and 13 following acidic hydrolysis of the cyclized products to produce 5 in high yields. Thionation reaction of 5 at the 2-position smoothly proceeds to give 2-thioxo derivatives 6. These compounds 5 and 6, corresponding to the products of a Biginelli-type reaction using urea or thiourea, a ketone and a 1,3-dicarbonyl compound, have long been inaccessible and hitherto unavailable for medicinal chemistry. These methods are invaluable for the synthesis of 5 and 6, which have been inaccessible by conventional methods. Therefore, the synthetic methods established in this study will expand the molecular diversity of their related derivatives. These compounds were also assessed for their antiproliferative effect on a human promyelocytic leukemia cell line, HL-60. Treatment of 10 µM 6b and 6d showed high inhibitory activity similarly to 1 µM all-trans retinoic acid (ATRA), indicating that the 2-thioxo group and length of two alkyl substituents at the 4-position are strongly related to activity.


Assuntos
Antineoplásicos/farmacologia , Cetonas/farmacologia , Pirimidinonas/farmacologia , Tionas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Cetonas/química , Estrutura Molecular , Pirimidinonas/síntese química , Pirimidinonas/química , Relação Estrutura-Atividade , Tionas/síntese química , Tionas/química
11.
Nat Commun ; 13(1): 199, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017488

RESUMO

Riboswitches are structured non-coding RNAs often located upstream of essential genes in bacterial messenger RNAs. Such RNAs regulate expression of downstream genes by recognizing a specific cellular effector. Although nearly 50 riboswitch classes are known, only a handful recognize multiple effectors. Here, we report the 2.60-Å resolution co-crystal structure of a class I type I preQ1-sensing riboswitch that reveals two effectors stacked atop one another in a single binding pocket. These effectors bind with positive cooperativity in vitro and both molecules are necessary for gene regulation in bacterial cells. Stacked effector recognition appears to be a hallmark of the largest subgroup of preQ1 riboswitches, including those from pathogens such as Neisseria gonorrhoeae. We postulate that binding to stacked effectors arose in the RNA World to closely position two substrates for RNA-mediated catalysis. These findings expand known effector recognition capabilities of riboswitches and have implications for antimicrobial development.


Assuntos
Neisseria gonorrhoeae/genética , Nucleosídeo Q/química , Pirimidinonas/química , Pirróis/química , RNA Bacteriano/química , RNA Mensageiro/química , Riboswitch , Pareamento de Bases , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Neisseria gonorrhoeae/metabolismo , Conformação de Ácido Nucleico , Nucleosídeo Q/biossíntese , Pirimidinonas/metabolismo , Pirróis/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
J Med Chem ; 65(3): 2297-2312, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34986308

RESUMO

The development of novel and safe insecticides remains an important need for a growing world population to protect crops and animal and human health. New chemotypes modulating the insect nicotinic acetylcholine receptors have been recently brought to the agricultural market, yet with limited understanding of their molecular interactions at their target receptor. Herein, we disclose the first crystal structures of these insecticides, namely, sulfoxaflor, flupyradifurone, triflumezopyrim, flupyrimin, and the experimental compound, dicloromezotiaz, in a double-mutated acetylcholine-binding protein which mimics the insect-ion-channel orthosteric site. Enabled by these findings, we discovered novel pharmacophores with a related mode of action, and we describe herein their design, synthesis, and biological evaluation.


Assuntos
Desenho de Fármacos , Proteínas de Insetos/metabolismo , Inseticidas/síntese química , Receptores Nicotínicos/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Animais , Sítios de Ligação , Besouros/efeitos dos fármacos , Besouros/metabolismo , Cristalografia por Raios X , Humanos , Controle de Insetos/métodos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , Conformação Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Piridinas/química , Piridinas/metabolismo , Pirimidinonas/química , Pirimidinonas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Compostos de Enxofre/química , Compostos de Enxofre/metabolismo
13.
J Med Chem ; 65(3): 2059-2077, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35041425

RESUMO

The homologous cytokines macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT or MIF2) play key roles in cancers. Molecules binding to the MIF tautomerase active site interfere with its biological activity. In contrast, the lack of potent MIF2 inhibitors hinders the exploration of MIF2 as a drug target. In this work, screening of a focused compound collection enabled the identification of a MIF2 tautomerase inhibitor R110. Subsequent optimization provided inhibitor 5d with an IC50 of 1.0 µM for MIF2 tautomerase activity and a high selectivity over MIF. 5d suppressed the proliferation of non-small cell lung cancer cells in two-dimensional (2D) and three-dimensional (3D) cell cultures, which can be explained by the induction of cell cycle arrest via deactivation of the mitogen-activated protein kinase (MAPK) pathway. Thus, we discovered and characterized MIF2 inhibitors (5d) with improved antiproliferative activity in cellular models systems, which indicates the potential of targeting MIF2 in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Oxirredutases Intramoleculares/metabolismo , Pirimidinonas/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Cinética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/metabolismo , Simulação de Dinâmica Molecular , Fosforilação/efeitos dos fármacos , Pirimidinonas/metabolismo , Pirimidinonas/farmacologia , Relação Estrutura-Atividade
14.
Mini Rev Med Chem ; 22(11): 1545-1558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34711161

RESUMO

Dihydropyrimidinones (DHPMs) are heterocycles obtained by the multicomponent Biginelli reaction. Recently, new synthetic protocols have allowed us to explore functionalisation at less explored positions of DHPMs, such as the N1 position. In this context, a full literature survey of N1- substituted DHPMs was performed. We analysed 27 papers and identified 379 compounds with substituents at the N1 position, most of them with alkyl groups, and a total of 28% compounds with aromatic substituents attached at the N1 position. N1-substituted DHPMs were explored mainly due to their effects on cancer cell proliferation via numerous targets, such as kinesin Eg5, heat shock protein 70, heat shock protein 90, and the epidermal growth factor receptor. Similarity analyses were performed using the data of 379 DHPMs from different cheminformatic approaches, i.e., chemical property correlations, principal component analysis, similarity networks, and compound clustering.


Assuntos
Pirimidinonas , Proliferação de Células , Pirimidinonas/química
15.
Bioorg Chem ; 118: 105457, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798458

RESUMO

Substitution of hazardous and often harmful organic solvents with "green" and "sustainable" alternative reaction media is always desirous. Ionic liquids (IL) have emerged as valuable and versatile liquids that can replace most organic solvents in a variety of syntheses. However, recently new types of low melting mixtures termed as Deep Eutectic Solvents (DES) have been utilized in organic syntheses. DES are non-volatile in nature, have sufficient thermal stability, and also have the ability to be recycled and reused. Hence DES have been used as alternative reaction media to perform different organic reactions. The availability of green, inexpensive and easy to handle alternative solvents for organic synthesis is still scarce, hence our interest in DES mediated syntheses. Herein we have investigated Biginelli reaction in different DES for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Monoamine oxidases and cholinesterases are important drug targets for the treatment of various neurological disorders such as Alzheimer's disease, Parkinson's disease, depression and anxiety. The compounds synthesized herein were evaluated for their inhibitory potential against these enzymes. Some of the compounds were found to be highly potent and selective inhibitors. Compounds 1 h and 1c were the most active monoamine oxidase A (MAO A) (IC50 = 0.31 ± 0.11 µM) and monoamine oxidase B (MAO B) (IC50 = 0.34 ± 0.04 µM) inhibitors respectively. All compounds were selective AChE inhibitors and did not inhibit BChE (<29% inhibition). Compound 1 k (IC50 = 0.13 ± 0.09 µM) was the most active AChE inhibitor.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Pirimidinonas/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Solventes Eutéticos Profundos/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Pirimidinonas/síntese química , Pirimidinonas/química , Relação Estrutura-Atividade
16.
Neoplasia ; 24(1): 34-49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864570

RESUMO

Hepatocellular carcinoma (HCC) is disease with a high mortality rate and limited treatment options. Alterations of fibroblast growth factor receptor 4 (FGFR4) has been regarded as an oncogenic driver for HCC and a promising target for HCC therapeutics. Herein, we report that GNF-7, a multi-targeted kinase inhibitor, and its derivatives including SIJ1263 (IC50 < 1 nM against FGFR4) are highly potent FGFR4 inhibitors and are capable of strongly suppressing proliferation of HCC cells and Ba/F3 cells transformed with wtFGFR4 or mtFGFR4. Compared with known FGFR4 inhibitors, both GNF-7 and SIJ1263 possess much higher (up to 100-fold) anti-proliferative activities via FGFR signaling blockade and apoptosis on HCC cells. Especially, SIJ1263 is 80-fold more potent (GI50 = 24 nM) on TEL-FGFR4 V550E Ba/F3 cells than BLU9931, which suggests that SIJ1263 would be effective for overriding drug resistance. In addition, both substances strongly suppress migration/invasion and colony formation of HCC cells. It is worth noting that SIJ1263 is superior to GNF-7 with regards to the fact that activities of SIJ1263 are higher than those of GNF-7 in all assays performed in this study. Collectively, this study provides insight into designing highly potent FGFR4 inhibitors capable of potentially overcoming drug-resistance for the treatment of HCC patients.


Assuntos
Antineoplásicos/farmacologia , Pirimidinonas/farmacologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Pirimidinonas/química , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Relação Estrutura-Atividade
17.
J Med Chem ; 64(24): 18102-18113, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34855405

RESUMO

This paper describes our continued efforts in the area of small-molecule apelin receptor agonists. Recently disclosed compound 2 showed an acceptable metabolic stability but demonstrated monodemethylation of the dimethoxyphenyl group to generate atropisomer metabolites in vitro. In this article, we extended the structure-activity relationship at the C2 position that led to the identification of potent pyrazole analogues with excellent metabolic stability. Due to the increased polarity at C2, the permeability for these compounds decreased. Further adjustment of the polarity by replacing the N1 2,6-dimethoxyphenyl group with a 2,6-diethylphenyl group and reoptimization for the potency of the C5 pyrroloamides resulted in potent compounds with improved permeability. Compound 21 displayed excellent pharmacokinetic profiles in rat, monkey, and dog models and robust pharmacodynamic efficacy in the rodent heart failure model. Compound 21 also showed an acceptable safety profile in preclinical toxicology studies and was selected as a backup development candidate for the program.


Assuntos
Receptores de Apelina/agonistas , Insuficiência Cardíaca/tratamento farmacológico , Pirimidinonas/farmacologia , Animais , Cães , Descoberta de Drogas , Humanos , Pirimidinonas/química , Pirimidinonas/farmacocinética , Pirimidinonas/uso terapêutico , Ratos , Relação Estrutura-Atividade
18.
Microbiol Spectr ; 9(2): e0027421, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34724729

RESUMO

Human malaria infection begins with a one-time asymptomatic liver stage followed by a cyclic symptomatic blood stage. For decades, the research for novel antimalarials focused on the high-throughput screening of molecules that only targeted the asexual blood stages. In a search for new effective compounds presenting a triple action against erythrocytic and liver stages in addition to the ability to block the transmission of the disease via the mosquito vector, 2-amino-thienopyrimidinone derivatives were synthesized and tested for their antimalarial activity. One molecule, named gamhepathiopine (denoted as "M1" herein), was active at submicromolar concentrations against both erythrocytic (50% effective concentration [EC50] = 0.045 µM) and liver (EC50 = 0.45 µM) forms of Plasmodium falciparum. Furthermore, gamhepathiopine efficiently blocked the development of the sporogonic cycle in the mosquito vector by inhibiting the exflagellation step. Moreover, M1 was active against artemisinin-resistant forms (EC50 = 0.227 µM), especially at the quiescent stage. Nevertheless, in mice, M1 showed modest activity due to its rapid metabolization by P450 cytochromes into inactive derivatives, calling for the development of new parent compounds with improved metabolic stability and longer half-lives. These results highlight the thienopyrimidinone scaffold as a novel antiplasmodial chemotype of great interest to search for new drug candidates displaying multistage activity and an original mechanism of action with the potential to be used in combination therapies for malaria elimination in the context of artemisinin resistance. IMPORTANCE This work reports a new chemical structure that (i) displays activity against the human malaria parasite Plasmodium falciparum at 3 stages of the parasitic cycle (blood stage, hepatic stage, and sexual stages), (ii) remains active against parasites that are resistant to the first-line treatment recommended by the World Health Organization (WHO) for the treatment of severe malaria (artemisinins), and (iii) reduces transmission of the parasite to the mosquito vector in a mouse model. This new molecule family could open the way to the conception of novel antimalarial drugs with an original multistage mechanism of action to fight against Plasmodium drug resistance and block interhuman transmission of malaria.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium cynomolgi/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Pirimidinonas/farmacologia , Animais , Antimaláricos/química , Artemisininas/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Cães , Resistência a Medicamentos/fisiologia , Feminino , Células Hep G2 , Humanos , Fígado/parasitologia , Macaca fascicularis , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pirimidinonas/química
19.
Bioorg Med Chem ; 50: 116477, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34757294

RESUMO

The monosaccharide l-Rhamnose is an important component of bacterial cell walls. The first step in the l-rhamnose biosynthetic pathway is catalysed by glucose-1-phosphate thymidylyltransferase (RmlA), which condenses glucose-1-phosphate (Glu-1-P) with deoxythymidine triphosphate (dTTP) to yield dTDP-d-glucose. In addition to the active site where catalysis of this reaction occurs, RmlA has an allosteric site that is important for its function. Building on previous reports, SAR studies have explored further the allosteric site, leading to the identification of very potent P. aeruginosa RmlA inhibitors. Modification at the C6-NH2 of the inhibitor's pyrimidinedione core structure was tolerated. X-ray crystallographic analysis of the complexes of P. aeruginosa RmlA with the novel analogues revealed that C6-aminoalkyl substituents can be used to position a modifiable amine just outside the allosteric pocket. This opens up the possibility of linking a siderophore to this class of inhibitor with the goal of enhancing bacterial cell wall permeability.


Assuntos
Desenho de Fármacos , Nucleotidiltransferases/antagonistas & inibidores , Pirimidinonas/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Modelos Moleculares , Estrutura Molecular , Nucleotidiltransferases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pirimidinonas/síntese química , Pirimidinonas/química , Relação Estrutura-Atividade
20.
Bioorg Med Chem ; 52: 116526, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34839157

RESUMO

The HIV-1 invasion is initiated with the interaction of viral glycoprotein gp120 and cellular receptor CD4. The binding mechanism reveals two major hotspots involved in gp120-CD4 interaction. The first one is a hydrophobic cavity (Phe43 cavity) on gp120 capped with phenyl ring of phe43CD4 and the second is the electrostatic interaction between positive charge of Arg59CD4 and negative charge of Asp368gp120. Targeting these hotspots, small molecules for entry inhibition and HIV-1 neutralization were designed and tested. In the process, pyrimidine derivatives were identified as potent molecules to intercept gp120-CD4 binding by targeting both the hotspots. Herein, the synthesis, characterization of 1,2,3,4-Tetrahydropyrimidine derivatives, and biological evaluation on 93IN101, a clade C virus are presented. The paper presents a novel set of entry inhibitors to target dual hotspots on gp120 to inhibit protein-protein interactions.


Assuntos
Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Pirimidinonas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Proteína gp120 do Envelope de HIV , Inibidores da Fusão de HIV/síntese química , Inibidores da Fusão de HIV/química , HIV-1/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirimidinonas/síntese química , Pirimidinonas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...